Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Immunol ; 15: 1277557, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410517

RESUMEN

Introduction: In VL, a proinflammatory phenotype is typically associated with enhanced phagocytosis and a Th1 mediated immune response resulting in infection control. In contrast, an anti-inflammatory phenotype, associated with a predominant regulatory response, typically enables intracellular multiplication of Leishmania parasites and disease progression. Methods: To investigate the impact of chemotherapy on Th2 and Th17 immune responses in patients with visceral leishmaniasis (VL), we assessed all combinations of intracellular expression of IFN-γ, IL-10, IL-4 and IL-17 in the CD4+ and CD8+ T cell populations of peripheral blood mononuclear cell (PBMC) samples from patients, after antigenic stimulation with Leishmania lysate, throughout treatment and follow-up. As increases in spleen and liver sizes and decreases in hematocrit, hemogloblin, erythrocytes, monocytes, leukocytes and platelets levels are strongly related to the disease, we studied the correlations between the frequencies of T cells producing the afore mentioned cytokines, individually and in combination, and these variables, as markers of disease or cure. Results: We found that the frequency of IFN-γ-producingCD4+ T cells increased until the end of chemotherapy with Glucantime® or AmBisome ®, while IL-10, IL-4 and IL-17-producing CD4+ T cells peaked on day 7 following the start of treatment. Although the frequency of CD4+IL-17+ cells decreased during treatment an increase was observed after clinical cure. The frequency of CD4+ T cells producing only IFN-γ or IL-17 correlated with blood monocytes levels. Frequencies of double-producers of IFN-γ and IL-10 or IL-4 correlated positively with eosinophils and platelets levels. Together, this suggest that IFN-γ drives the immune response towards Th1 at cure. In contrast, and associated with disease or Th2 response, the frequency of CD4+ IL-10+ cells correlated positively with spleen sizes and negatively with circulating monocyte levels, while the frequency of CD4+ producing both IL-4 and IL-10 correlated negatively with platelets levels. The frequency of CD8+ single-producers of IFN-γ increased from day 21 to 90 while that of single-producers of IL-10 peaked on day 7, of IL-4 on day 30 and of IL-17, on day 180. IFN-γ expression in CD8+ single- and double-producers of cytokines was indicative of an immune response associated with cure. In contrast, frequencies of CD8+ double-producers of IL-4 and IL-10, IL-4 and IL-17 and IL-10 and IL-17 and producers of three and four cytokines, were associated with disease and were low after the cure. Frequencies of CD8+ T cells producing IFN-γ alone or with IL-17 were positively correlated with platelets levels. In contrast, as markers of disease: 1) frequencies of single producers of IL-10 correlated negatively with leukocytes levels, 2) frequencies of double producers of IL-4 and IL-10 correlated negatively with platelet, leukocyte, lymphocyte and circulating monocyte levels, 3) frequencies of triple-producers of IFN-γ, IL-4 and IL-10 correlated negatively with platelet, leukocyte and neutrophil levels and 4) frequencies of producers of IFN-γ, IL-4, IL-10 and IL-17 simultaneously correlated positively with spleen size, and negatively with leukocyte and neutrophil levels. Discussion: Our results confirmed that the clinical improvement of VL patients correlates with the decrease of an IL-4 and IL-10 CD4+Th2 response, the recovery of CD4+ Th1 and Th17 responses and the frequency of CD8+ single-producers of IFN-γ and double producers of IFN-γ and IL-17.


Asunto(s)
Linfocitos T CD8-positivos , Leishmaniasis Visceral , Humanos , Interleucina-10 , Interleucina-17 , Leucocitos Mononucleares/metabolismo , Interleucina-4 , Interferón gamma/metabolismo , Citocinas/metabolismo , Células Th17/metabolismo
2.
Front Immunol ; 12: 773983, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777391

RESUMEN

Visceral leishmaniasis (VL) is a chronic and often fatal disease caused by protozoans of the genus Leishmania that affects millions of people worldwide. Patients with symptomatic VL have an impaired anti-Leishmania-specific CD4+ T-cell response, which is reversed after clinical cure. In contrast, the quality of the CD4+ and CD8+ T-cell responses involved in resistance and/or cure of VL relies on the capability of these cells to activate polyfunctional and memory responses, which are associated with the simultaneous production of three cytokines: IFN-γ, IL-2, and TNF-α. Models for the development of CD4 and CD8 T-cell quality in memory and protection to leishmaniasis have been described previously. We aimed to assess the functionality of the T cells involved in the recovery of the immune suppression throughout the VL treatment. Therefore, we cultured peripheral blood mononuclear cells (PBMCs) from VL patients and healthy controls in vitro with soluble Leishmania antigen (SLA). Cell surface markers and intracellular cytokine production were determined on days 7, 14, 21, 30, 60, 90, and 180 after the beginning of chemotherapy. We observed that the frequencies of CD4+TNF-α+IFN-γ+ and the multifunctional CD4+IL-2+TNF-α+IFN-γ+, together with CD4+TNF-α+ and CD4+IFN-γ+ T cells, increased throughout and at the end of the treatment, respectively. In addition, enhanced frequencies of CD8+IL-2+TNF-α+IFN-γ+ and CD8+TNF-α+IFN-γ T cells were also relevant in the healing process. Noteworthy, the frequencies of the CD4+ and CD8 central-memory T cells, which produce IL-2, TNF-α, and IFN-γ and ensure the memory response against parasite reinfection, are significantly enhanced in cured patients. In addition, the subset of the non-functional CD8Low population is predominant in VL untreated patients and decreases along the chemotherapy treatment. In contrast, a CD8High subset increased towards the cure. Furthermore, the cure due to treatment with meglumine antimoniate or with liposomal amphotericin B was associated with the recovery of the T-cell immune responses. We described the evolution and participation of functional T cells during the treatment of patients with VL. Our results disclosed that the clinical improvement of patients is significantly associated with the participation of the CD4+ and CD8+ cytokine-secreting T cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Interferón gamma/biosíntesis , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Adulto , Antígenos de Protozoos/inmunología , Biomarcadores , Femenino , Interacciones Huésped-Parásitos , Humanos , Leishmaniasis Visceral/parasitología , Masculino , Células T de Memoria , Persona de Mediana Edad , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Adulto Joven
4.
Front Immunol ; 10: 724, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024556

RESUMEN

Leishmania (V.) braziliensis is the etiological agent of Cutaneous (CL) and Mucocutaneous leishmaniasis (ML) in the New World. CL can be more benign but ML can be severe and disfiguring. Immunity to these diseases include hypersensitivity, an enhanced inflammatory response with strong IFN-γ and TNF-α secretion. Additionally, the production of IL-10 which down modulates the immune response is reduced. The Nucleoside hydrolase (NH36) of Leishmania (L.) donovani is the main antigen of the Leishmune veterinary vaccine and its F3 domain induces a CD4+ T cell-mediated protection against L. (L.) infantum chagasi infection. Prevention of L. (L.) amazonensis infection requires in contrast an additional CD8+ T cell mediated response induced by the F1 domain. Consequently, the F1F3 recombinant chimera, which contains both domains cloned in tandem, optimized the vaccine efficacy against L. (L.) amazonensis mouse infection. We compared the efficacies of NH36, F1, F3, and the FIF3 chimera against L. (V.) braziliensis mouse infection. The F1F3 chimera increased the NH36 specific IgA and response before and after infection and the IgG and IgG3 levels after challenge. It also induced a 49% stronger intradermal response to leishmanial antigen (IDR) than NH36 that was positively correlated to the levels of IFN-γ and TNF-α, IgG, IgG2a, IgG2b, and IgG3 anti-NH36 antibodies. However, stronger Th1 responses with elevated IFN-γ/IL-10 and TNF-α/IL-10 ratios were promoted by the F3 and F1 vaccines and detected in infected controls while the F1F3 chimera promoted the highest IL-10 secretion, which reduced the pathological Th1 response, and characterized the induction of a mixed and/or T-cell regulatory response. We identified the epitopes responsible for these immune responses. The F3 vaccine induced the earliest immunity and after challenge, the F1F3 chimera promoted the highest CD4+ and CD8+ cytokine-secreting T cell responses, and the predominant frequencies of multifunctional CD4+ and CD8+IL-2+TNF-α+IFN-γ+ T cells. Also as observed against L. (L.) amazonensis infection, the F1F3 chimera showed the strongest reduction of the ear lesions sizes induced by L. (V.) braziliensis. Our results confirm the potential use of the F1F3 chimera in a multi-species cross-protective vaccine against L. (V.) braziliensis.


Asunto(s)
Protección Cruzada , Epítopos , Leishmania braziliensis , Leishmania donovani , Leishmaniasis Cutánea , Animales , Femenino , Ratones , Antígenos de Protozoos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/parasitología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/parasitología , Protección Cruzada/inmunología , Citocinas/inmunología , Epítopos/inmunología , Leishmania braziliensis/inmunología , Leishmania donovani/inmunología , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/parasitología , Ratones Endogámicos BALB C
5.
Front Immunol ; 8: 750, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28747911

RESUMEN

The Leishmania (Leishmania) donovani nucleoside hydrolase NH36 is the main antigen of the Leishmune® vaccine and one of the promising candidates for vaccination against visceral leishmaniasis. The antigenicity of the N-terminal (F1), the central (F2), or the C-terminal recombinant domain (F3) of NH36 was evaluated using peripheral blood mononuclear cells (PBMC) from individuals infected with L. (L.) infantum from an endemic area of visceral leishmaniasis of Spain. Both NH36 and F1 domains significantly increased the PBMC proliferation stimulation index of cured patients and infected asymptomatic individuals compared to healthy controls. Moreover, F1 induced a 19% higher proliferative response than NH36 in asymptomatic exposed subjects. In addition, in patients cured from visceral leishmaniasis, proliferation in response to NH36 and F1 was accompanied by a significant increase of IFN-γ and TNF-α secretion, which was 42-43% higher, in response to F1 than to NH36. The interleukin 17 (IL-17) secretion was stronger in asymptomatic subjects, in response to F1, as well as in cured cutaneous leishmaniasis after NH36 stimulation. While no IL-10 secretion was determined by F1, a granzyme B increase was detected in supernatants from cured patients after stimulation with either NH36 or F1. These data demonstrate that F1 is the domain of NH36 that induces a recall cellular response in individuals with acquired resistance to the infection by L. (L.) infantum. In addition, F1 and NH36 discriminated the IgG3 humoral response in patients with active visceral leishmaniasis due to L. (L.) donovani (Ethiopia) and L. (L.) infantum (Spain) from that of endemic and non-endemic area controls. NH36 showed higher reactivity with sera from L. (L.) donovani-infected individuals, indicating species specificity. We conclude that the F1 domain, previously characterized as an inducer of the Th1 and Th17 responses in cured/exposed patients infected with L. (L.) infantum chagasi, may also be involved in the generation of a protective response against L. (L.) infantum and represents a potential vaccine candidate for the control of human leishmaniasis alone, or in combination with other HLA epitopes/antigens.

6.
Front Microbiol ; 8: 978, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28626451

RESUMEN

Visceral leishmaniasis is a neglected disease caused by Leishmania protozoa parasites transmitted by infected sand fly vectors. This disease represents the second in mortality among tropical infections and is associated to a profound immunosuppression state of the host. The hallmark of this infection-induced host immunodeviation is the characteristic high levels of the regulatory interleukin-10 (IL-10) cytokine. In the present study, we investigated the role of B-1 cells in the maintenance of splenic IL-10 levels that could interfere with resistance to parasite infection. Using an experimental murine infection model with Leishmania (L.) infantum chagasi we demonstrated an improved resistance of B-1 deficient BALB/XID mice to infection. BALB/XID mice developed a reduced splenomegaly with diminished splenic parasite burden and lower levels of IL-10 secretion of purified splenocytes at 30 days post-infection, as compared to BALB/c wild-type control mice. Interestingly, we found that resident peritoneal macrophages isolated from BALB/XID mice were more effective to control the parasite load in comparison to cells isolated from BALB/c wild-type mice. Our findings point to a role of B-1 cells in the host susceptibility to visceral leishmaniasis.

7.
Front Immunol ; 8: 100, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28280494

RESUMEN

The Leishmania donovani nucleoside hydrolase (NH36) and NH A34480 of Leishmania amazonensis share 93% of sequence identity. In mice, the NH36 induced protection against visceral leishmaniasis is mediated by a CD4+ T cell response against its C-terminal domain (F3). Besides this CD4+ Th1 response, prevention and cure of L. amazonensis infection require also additional CD8+ and regulatory T-cell responses to the NH36 N-terminal (F1 domain). We investigated if mice vaccination with F1 and F3 domains cloned in tandem, in a recombinant chimera, with saponin, optimizes the vaccine efficacy against L. amazonensis infection above the levels promoted by the two admixed domains or by each domain independently. The chimera induced the highest IgA, IgG, and IgG2a anti-NH36 antibody, IDR, IFN-γ, and IL-10 responses, while TNF-α was more secreted by mice vaccinated with F3 or all F3-contaning vaccines. Additionally, the chimera and the F1 vaccine also induced the highest proportions of CD4+ and CD8+ T cells secreting IL-2, TNF-α, or IFN-γ alone, TNF-α in combination with IL-2 or IFN-γ, and of CD4+ multifunctional cells secreting IL-2, TNF-α, and IFN-γ. Correlating with the immunological results, the strongest reductions of skin lesions sizes were determined by the admixed domains (80%) and by the chimera (84%), which also promoted the most pronounced and significant reduction of the parasite load (99.8%). Thus, the epitope presentation in a recombinant chimera optimizes immunogenicity and efficacy above the levels induced by the independent or admixed F1 and F3 domains. The multiparameter analysis disclosed that the Th1-CD4+ T helper response induced by the chimera is mainly directed against its FRYPRPKHCHTQVA epitope. Additionally, the YPPEFKTKL epitope of F1 induced the second most important CD4+ T cell response, and, followed by the DVAGIVGVPVAAGCT, FMLQILDFYTKVYE, and ELLAITTVVGNQ sequences, also the most potent CD8+ T cell responses and IL-10 secretion. Remarkably, the YPPEFKTKL epitope shows high amino acid identity with a multipotent PADRE sequence and stimulates simultaneously the CD4+, CD8+ T cell, and a probable T regulatory response. With this approach, we advanced in the design of a NH36 polytope vaccine capable of inducing cross-protection to cutaneous leishmaniasis.

8.
PLoS Negl Trop Dis ; 9(12): e0004297, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26701750

RESUMEN

BACKGROUND: Immucillins ImmA (IA), ImmH (IH) and SerMe-ImmH (SMIH) are synthetic deazapurine nucleoside analogues that inhibit Leishmania (L.) infantum chagasi and Leishmania (L.) amazonensis multiplication in vitro without macrophage toxicity. Immucillins are compared to the Glucantime standard drug in the chemotherapy of Leishmania (L.) infantum chagasi infection in mice and hamsters. These agents are tested for toxicity and immune system response. METHODOLOGY/PRINCIPAL FINDINGS: BALB/c mice were infected with 107 amastigotes, treated with IA, IH, SMIH or Glucantime (2.5mg/kg/day) and monitored for clinical variables, parasite load, antibody levels and splenocyte IFN-γ, TNF-α, and IL-10 expression. Cytokines and CD4+, CD8+ and CD19+ lymphocyte frequencies were assessed in uninfected controls and in response to immucillins. Urea, creatinine, GOT and GPT levels were monitored in sera. Anti-Leishmania-specific IgG1 antibodies (anti-NH36) increased in untreated animals. IgG2a response, high levels of IFN-γ, TNF-α and lower levels of IL-10 were detected in mice treated with the immucillins and Glucantime. Immucillins permitted normal weight gain, prevented hepato-splenomegaly and cleared the parasite infection (85-89%) without renal and hepatic toxicity. Immucillins promoted 35% lower secretion of IFN-γ in uninfected controls than in infected mice. IA and IH increased the CD4+ T and CD19+ B cell frequencies. SMIH increased only the proportion of CD-19 B cells. IA and IH also cured infected hamsters with lower toxicity than Glucantime. CONCLUSIONS/SIGNIFICANCE: Immucillins IA, IH and SMIH were effective in treating leishmaniasis in mice. In hamsters, IA and IH were also effective. The highest therapeutic efficacy was obtained with IA, possibly due to its induction of a TH1 immune response. Low immucillin doses were required and showed no toxicity. Our results disclose the potential use of IA and IH in the therapy of visceral leishmaniasis.


Asunto(s)
Adenina/análogos & derivados , Antiprotozoarios/uso terapéutico , Leishmaniasis Visceral/tratamiento farmacológico , Nucleósidos de Purina/uso terapéutico , Pirimidinonas/uso terapéutico , Pirrolidinas/uso terapéutico , Adenina/efectos adversos , Adenina/uso terapéutico , Adenosina/análogos & derivados , Animales , Anticuerpos Antiprotozoarios/sangre , Antiprotozoarios/efectos adversos , Análisis Químico de la Sangre , Modelos Animales de Enfermedad , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Femenino , Expresión Génica , Inmunofenotipificación , Interferón gamma/biosíntesis , Interleucina-10/biosíntesis , Leishmania , Leishmaniasis Visceral/patología , Leucocitos Mononucleares/inmunología , Mesocricetus , Ratones Endogámicos BALB C , Carga de Parásitos , Nucleósidos de Purina/efectos adversos , Pirimidinonas/efectos adversos , Pirrolidinas/efectos adversos , Bazo/inmunología , Subgrupos de Linfocitos T/inmunología , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/biosíntesis
9.
PLoS One ; 10(6): e0128785, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26056825

RESUMEN

Influenza viruses pose a serious global health threat, particularly in light of newly emerging strains, such as the avian influenza H5N1 and H7N9 viruses. Vaccination remains the primary method for preventing acquiring influenza or for avoiding developing serious complications related to the disease. Vaccinations based on inactivated split virus vaccines or on chemically inactivated whole virus have some important drawbacks, including changes in the immunogenic properties of the virus. To induce a greater mucosal immune response, intranasally administered vaccines are highly desired as they not only prevent disease but can also block the infection at its primary site. To avoid these drawbacks, hydrostatic pressure has been used as a potential method for viral inactivation and vaccine production. In this study, we show that hydrostatic pressure inactivates the avian influenza A H3N8 virus, while still maintaining hemagglutinin and neuraminidase functionalities. Challenged vaccinated animals showed no disease signs (ruffled fur, lethargy, weight loss, and huddling). Similarly, these animals showed less Evans Blue dye leakage and lower cell counts in their bronchoalveolar lavage fluid compared with the challenged non-vaccinated group. We found that the whole inactivated particles were capable of generating a neutralizing antibody response in serum, and IgA was also found in nasal mucosa and feces. After the vaccination and challenge we observed Th1/Th2 cytokine secretion with a prevalence of IFN-γ. Our data indicate that the animals present a satisfactory immune response after vaccination and are protected against infection. Our results may pave the way for the development of a novel pressure-based vaccine against influenza virus.


Asunto(s)
Administración Intranasal/métodos , Infecciones por Orthomyxoviridae/prevención & control , Vacunas de Productos Inactivados/inmunología , Administración Intranasal/efectos adversos , Animales , Citocinas/genética , Citocinas/metabolismo , Perros , Femenino , Subtipo H3N8 del Virus de la Influenza A/inmunología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología , Presión , Células TH1/inmunología , Células Th2/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/efectos adversos
10.
PLoS One ; 10(4): e0124183, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25909893

RESUMEN

Chemotherapy against visceral leishmaniasis is associated with high toxicity and drug resistance. Leishmania parasites are purine auxotrophs that obtain their purines from exogenous sources. Nucleoside hydrolases release purines from nucleosides and are drug targets for anti-leishmanial drugs, absent in mammal cells. We investigated the substrate specificity of the Leishmania (L.) donovani recombinant nucleoside hydrolase NH36 and the inhibitory effect of the immucillins IA (ImmA), DIA (DADMe-ImmA), DIH (DADMe-ImmH), SMIH (SerMe-ImmH), IH (ImmH), DIG (DADMe-ImmG), SMIG (SerMe-ImmG) and SMIA (SerME-ImmA) on its enzymatic activity. The inhibitory effects of immucillins on the in vitro multiplication of L. (L.) infantum chagasi and L. (L.) amazonensis promastigotes were determined using 0.05-500 µM and, when needed, 0.01-50 nM of each drug. The inhibition on multiplication of L. (L.) infantum chagasi intracellular amastigotes in vitro was assayed using 0.5, 1, 5 and 10 µM of IA, IH and SMIH. The NH36 shows specificity for inosine, guanosine, adenosine, uridine and cytidine with preference for adenosine and inosine. IA, IH, DIH, DIG, SMIH and SMIG immucillins inhibited L. (L.) infantum chagasi and L. (L.) amazonensis promastigote growth in vitro at nanomolar to micromolar concentrations. Promastigote replication was also inhibited in a chemically defined medium without a nucleoside source. Addition of adenosine decreases the immucillin toxicity. IA and IH inhibited the NH36 enzymatic activity (Ki = 0.080 µM for IA and 0.019 µM for IH). IA, IH and SMIH at 10 µM concentration, reduced the in vitro amastigote replication inside mice macrophages by 95% with no apparent effect on macrophage viability. Transmission electron microscopy revealed global alterations and swelling of L. (L.) infantum chagasi promastigotes after treatment with IA and IH while SMIH treatment determined intense cytoplasm vacuolization, enlarged vesicles and altered kinetoplasts. Our results suggest that IA, IH and SMIH may provide new chemotherapy agents for leishmaniasis.


Asunto(s)
Antiprotozoarios/farmacología , Leishmania infantum/efectos de los fármacos , Leishmania mexicana/efectos de los fármacos , Adenina/análogos & derivados , Adenina/química , Adenina/farmacología , Adenosina/análogos & derivados , Animales , Antiprotozoarios/química , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Técnicas In Vitro , Cinética , Leishmania infantum/crecimiento & desarrollo , Leishmania infantum/ultraestructura , Leishmania mexicana/crecimiento & desarrollo , Leishmania mexicana/ultraestructura , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Visceral/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , N-Glicosil Hidrolasas/antagonistas & inhibidores , Nucleósidos de Purina/química , Nucleósidos de Purina/farmacología , Pirimidinonas/química , Pirimidinonas/farmacología , Pirroles/química , Pirroles/farmacología , Pirrolidinas/química , Pirrolidinas/farmacología
11.
Front Immunol ; 5: 189, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24822054

RESUMEN

The nucleoside hydrolase (NH) of Leishmania donovani (NH36) is a phylogenetic marker of high homology among Leishmania parasites. In mice and dog vaccination, NH36 induces a CD4+ T cell-driven protective response against Leishmania chagasi infection directed against its C-terminal domain (F3). The C-terminal and N-terminal domain vaccines also decreased the footpad lesion caused by Leishmania amazonensis. We studied the basis of the crossed immune response using recombinant generated peptides covering the whole NH36 sequence and saponin for mice prophylaxis against L. amazonensis. The F1 (amino acids 1-103) and F3 peptide (amino acids 199-314) vaccines enhanced the IgG and IgG2a anti-NH36 antibodies to similar levels. The F3 vaccine induced the strongest DTH response, the highest proportions of NH36-specific CD4+ and CD8+ T cells after challenge and the highest expression of IFN-γ and TNF-α. The F1 vaccine, on the other hand, induced a weaker but significant DTH response and a mild enhancement of IFN-γ and TNF-α levels. The in vivo depletion with anti-CD4 or CD8 monoclonal antibodies disclosed that cross-protection against L. amazonensis infection was mediated by a CD4+ T cell response directed against the C-terminal domain (75% of reduction of the size of footpad lesion) followed by a CD8+ T cell response against the N-terminal domain of NH36 (57% of reduction of footpad lesions). Both vaccines were capable of inducing long-term cross-immunity. The amino acid sequence of NH36 showed 93% identity to the sequence of the NH A34480 of L. amazonensis, which also showed the presence of completely conserved predicted epitopes for CD4+ and CD8+ T cells in F1 domain, and of CD4+ epitopes differing by a single amino acid, in F1 and F3 domains. The identification of the C-terminal and N-terminal domains as the targets of the immune response to NH36 in the model of L. amazonensis infection represents a basis for the rationale development of a bivalent vaccine against leishmaniasis.

12.
Eur J Med Chem ; 56: 301-7, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22947894

RESUMEN

In this study the recombinant enzyme nucleoside hydrolase of Leishmania donovani (rLdNH) was expressed in Escherichia coli in connection with maltose binding protein (MBP). The rLdNH-MBP showed efficient a significant in vitro activity with inosine as substrate. From the coupled reaction with xanthine oxidase (XO) it was possible to determine the kinetic constants of rLdNH-MBP as K(M) (434 ± 109 µM) and V(max) (0.20 ± 0.02 µM). In addition, two nucleoside analogs (compounds 1 and 2) were tested as prototypes of rLdNH inhibitors. These compounds presented high affinity for the enzyme with K(i) values of 1.6 ± 0.2 and 17.0 ± 2.1 µM, respectively, as well as 271 and 26 folds higher than the affinity constant found for inosine. We also determined the type of enzyme inhibition, using double-reciprocal plot for these two compounds and the results confirmed a competitive inhibition. Additional docking studies showed the binding manner of compounds 1 and 2 inside the active site of LdNH revealing the essential residues for an effective inhibition. These results confirm that compounds 1 and 2 are strong rLdNH-MBP inhibitors.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Leishmania donovani/enzimología , N-Glicosil Hidrolasas/antagonistas & inhibidores , Nucleósidos/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Cinética , Proteínas de Unión a Maltosa/antagonistas & inhibidores , Proteínas de Unión a Maltosa/aislamiento & purificación , Proteínas de Unión a Maltosa/metabolismo , Modelos Moleculares , Estructura Molecular , N-Glicosil Hidrolasas/aislamiento & purificación , N-Glicosil Hidrolasas/metabolismo , Nucleósidos/síntesis química , Nucleósidos/química , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
13.
Front Immunol ; 3: 69, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22566950

RESUMEN

Leishmaniasis is the third most important vector-borne disease worldwide. Visceral leishmaniasis (VL) is a severe and frequently lethal protozoan disease of increasing incidence and severity due to infected human and dog migration, new geographical distribution of the insect due to global warming, coinfection with immunosuppressive diseases, and poverty. The disease is an anthroponosis in India and Central Africa and a canid zoonosis (ZVL) in the Americas, the Middle East, Central Asia, China, and the Mediterranean. The ZVL epidemic has been controlled by one or more measures including the culling of infected dogs, treatment of human cases, and insecticidal treatment of homes and dogs. However, the use of vaccines is considered the most cost-effective control tool for human and canine disease. Since the severity of the disease is related to the generation of T-cell immunosuppression, effective vaccines should be capable of sustaining or enhancing the T-cell immunity. In this review we summarize the clinical and parasitological characteristics of ZVL with special focus on the cellular and humoral canine immune response and review state-of-the-art vaccine development against human and canine VL. Experimental vaccination against leishmaniasis has evolved from the practice of leishmanization with living parasites to vaccination with crude lysates, native parasite extracts to recombinant and DNA vaccination. Although more than 30 defined vaccines have been studied in laboratory models no human formulation has been licensed so far; however three second-generation canine vaccines have already been registered. As expected for a zoonotic disease, the recent preventive vaccination of dogs in Brazil has led to a reduction in the incidence of canine and human disease. The recent identification of several Leishmania proteins with T-cell epitopes anticipates development of a multiprotein vaccine that will be capable of protecting both humans and dogs against VL.

14.
Parasit Vectors ; 4: 197, 2011 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-21985335

RESUMEN

'One Health' proposes the unification of medical and veterinary sciences with the establishment of collaborative ventures in clinical care, surveillance and control of cross-species disease, education, and research into disease pathogenesis, diagnosis, therapy and vaccination. The concept encompasses the human population, domestic animals and wildlife, and the impact that environmental changes ('environmental health') such as global warming will have on these populations. Visceral leishmaniasis is a perfect example of a small companion animal disease for which prevention and control might abolish or decrease the suffering of canine and human patients, and which aligns well with the One Health approach. In this review we discuss how surveillance for leishmaniases is undertaken globally through the control of anthroponootic visceral leishmaniasis (AVL) and zoonotic visceral leishmaniasis (ZVL). The ZVL epidemic has been managed to date by the culling of infected dogs, treatment of human cases and control of the sandfly vector by insecticidal treatment of human homes and the canine reservoir. Recently, preventive vaccination of dogs in Brazil has led to reduction in the incidence of the canine and human disease. Vaccination permits greater dog owner compliance with control measures than a culling programme. Another advance in disease control in Africa is provided by a surveillance programme that combines remote satellite sensing, ecological modelling, vector surveillance and geo-spatial mapping of the distribution of vectors and of the animal-to-animal or animal-to-human pathogen transmission. This coordinated programme generates advisory notices and alerts on emerging infectious disease outbreaks that may impede or avoid the spreading of visceral leishmaniasis to new areas of the planet as a consequence of global warming.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Leishmaniasis/epidemiología , Leishmaniasis/prevención & control , Leishmaniasis/veterinaria , Animales , Enfermedades Endémicas/prevención & control , Enfermedades Endémicas/veterinaria , Epidemias/prevención & control , Epidemias/veterinaria , Salud Global , Humanos , Leishmaniasis/transmisión
15.
PLoS Negl Trop Dis ; 4(11): e866, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-21085470

RESUMEN

Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199-314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73±12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-γ secretion, ratios of IFN-γ/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNFα/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5-88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-γ/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for multivalent vaccines against NHs-dependent pathogens.


Asunto(s)
Inmunidad Adaptativa , Linfocitos T CD4-Positivos/inmunología , Leishmania donovani/enzimología , Leishmaniasis Visceral/inmunología , N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/inmunología , Proteínas Protozoarias/química , Proteínas Protozoarias/inmunología , Secuencia de Aminoácidos , Animales , Linfocitos T CD4-Positivos/parasitología , Mapeo Epitopo , Femenino , Humanos , Interferón gamma/inmunología , Interleucina-10/inmunología , Leishmania donovani/química , Leishmania donovani/inmunología , Leishmaniasis Visceral/parasitología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , N-Glicosil Hidrolasas/genética , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética
16.
Vaccine ; 28(38): 6183-90, 2010 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-20654667

RESUMEN

The Apical Membrane Antigen 1 (AMA-1) is considered a promising candidate for development of a malaria vaccine against asexual stages of Plasmodium. We recently identified domain II (DII) of Plasmodium vivax AMA-1 (PvAMA-1) as a highly immunogenic region recognised by IgG antibodies present in many individuals during patent infection with P. vivax. The present study was designed to evaluate the immunogenic properties of a bacterial recombinant protein containing PvAMA-1 DII. To accomplish this, the recombinant protein was administered to mice in the presence of each of the following six adjuvants: Complete/Incomplete Freund's Adjuvant (CFA/IFA), aluminium hydroxide (Alum), Quil A, QS21 saponin, CpG-ODN 1826 and TiterMax. We found that recombinant DII was highly immunogenic in BALB/c mice when administered in the presence of any of the tested adjuvants. Importantly, we show that DII-specific antibodies recognised the native AMA-1 protein expressed on the surface of P. vivax merozoites isolated from the blood of infected patients. These results demonstrate that a recombinant protein containing PvAMA-1 DII is immunogenic when administered in different adjuvant formulations, and indicate that this region of the AMA-1 protein should continue to be evaluated as part of a subunit vaccine against vivax malaria.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Vacunas contra la Malaria/inmunología , Proteínas de la Membrana/inmunología , Proteínas Protozoarias/inmunología , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos Monoclonales/inmunología , Formación de Anticuerpos , Femenino , Ratones , Ratones Endogámicos BALB C , Plasmodium vivax/inmunología , Proteínas Recombinantes/inmunología , Vacunas de Subunidad/inmunología
17.
Vaccine ; 27(27): 3505-12, 2009 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-19464528

RESUMEN

Leishmune, the first prophylactic vaccine licensed against canine visceral leishmaniasis (CVL), has been used in Brazil since 2004, where seropositive dogs are sacrificed in order to control human visceral leishmaniasis (VL). We demonstrate here that vaccination with Leishmune does not interfere with the serological control campaign (110,000 dogs). Only 1.3% of positivity (76 among 5860) was detected among Leishmune uninfected vaccinees. We also analyzed the possible additive effect of Leishmune vaccination over dog culling, on the decrease of the incidence of CVL and VL in two Brazilian endemic areas, from 2004 to 2006. In Araçatuba, a 25% of decline was seen in CVL with a 61% decline in human cases, indicating the additive effect of Leishmune vaccination of 5.7% of the healthy dogs (1419 dogs), on regular dog culling. In Belo Horizonte (BH), rising curves of canine and human incidence were observed in the districts of Barreiro, Venda Nova and Noroeste, while the canine and human incidence of Centro Sul, Leste, Nordeste, Norte, Pampulha and Oeste, started to decrease or maintained a stabilized plateau after Leishmune vaccination. Among the districts showing a percent decrease of human incidence (-36.5%), Centro Sul and Pampulha showed the highest dog vaccination percents (63.27% and 27.27%, respectively) and the lowest dog incidence (-3.36% and 1.89%, respectively). They were followed by Oeste, that vaccinated 25.30% of the animals and experienced an increase of only 12.86% of dog incidence and by Leste and Nordeste, with lower proportions of vaccinees (11.72% and 10.76%, respectively) and probably because of that, slightly higher canine incidences (42.77% and 35.73%). The only exception was found in Norte district where the reduced human and canine incidence were not correlated to Leishmune vaccination. Much lower proportions of dogs were vaccinated in Venda Nova (4.35%), Noroeste (10.27%) and Barreiro (0.09%) districts, which according to that exhibited very increased canine incidences (24.48%, 21.85% and 328.57%, respectively), and pronounced increases in human incidence (14%, 4% and 17%, respectively). The decrease of canine (p=-0.008) and human incidences (p=-0.048) is directly correlated to the increase of the number of vaccinated dogs, confirming the additive control effect of Leishmune vaccination over dog culling, reducing the parasite reservoir, protecting dogs and, in this way, reducing the risk of transmission of VL to humans and becoming a new effective control tool.


Asunto(s)
Enfermedades de los Perros/prevención & control , Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis Visceral/prevención & control , Leishmaniasis Visceral/veterinaria , Vacunación/veterinaria , Animales , Brasil , Enfermedades de los Perros/epidemiología , Perros , Ensayo de Inmunoadsorción Enzimática , Humanos , Incidencia , Leishmaniasis Visceral/epidemiología , Zoonosis/epidemiología
18.
Expert Rev Vaccines ; 7(6): 833-51, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18665780

RESUMEN

The Leishmania donovani glycoprotein fraction, known as FML, successfully underwent preclinical and clinical (Phase I-III) vaccine trials against canine visceral leishmaniasis (92-95% of protection and 76-80% of vaccine efficacy) when formulated with a QS21 saponin-containing adjuvant. It became the licensed Leishmune vaccine for canine prophylaxis in Brazil. The immune response raised by the vaccine is long lasting, immunotherapeutic and reduces dog infectivity blocking the transmission of the disease, as revealed by an in vivo assay. The preliminary epidemiological control data of vaccinated areas in Brazil indicate that, in spite of the still low vaccine coverage, there was a significant decrease in the incidence of the human and canine disease. A 36-kDa glycoprotein, in the FML complex, is the human marker of the disease, which was protective in mice as native recombinant protein or DNA vaccine. The DNA vaccine is now being tested against the canine disease. This review resumes the development of the second-generation FML-saponin-Leishmune vaccine, its adjuvant and of the NH36 DNA vaccine, toward the identification of its major epitopes that might be included in a possible future synthetic vaccine.


Asunto(s)
Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis Visceral/veterinaria , Vacunas Sintéticas/microbiología , Adyuvantes Inmunológicos/farmacología , Animales , Brasil , Enfermedades de los Perros/parasitología , Enfermedades de los Perros/prevención & control , Perros , Humanos , Leishmania donovani/inmunología , Leishmaniasis Visceral/prevención & control , Saponinas/farmacología , Vacunas de ADN/inmunología
19.
Vaccine ; 26(14): 1709-24, 2008 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-18295939

RESUMEN

Human vaccination against leishmaniasis using live Leishmania was used in Middle East and Russia (1941-1980). First-generation vaccines, composed by killed parasites induce low efficacies (54%) and were tested in humans and dogs Phase III trials in Asia and South America since 1940. Second-generation vaccines using live genetically modified parasites, or bacteria or viruses containing Leishmania genes, recombinant or native fractions are known since the 1990s. Due to the loss of PAMPs, the use of adjuvants increased vaccine efficacies of the purified antigens to 82%, in Phase III dog trials. Recombinant second-generation vaccines and third-generation DNA vaccines showed average values of parasite load reduction of 68% and 59% in laboratory animal models, respectively, but their success in field trials had not yet been reported. This review is focused on vaccine candidates that show any efficacy against leishmaniasis and that are already in different phase trials. A lot of interest though was generated in recent years, by the studies going on in experimental models. The promising candidates may find a place in the forth coming years. Among them most probably are the multiple-gene DNA vaccines that are stable and do not require cold-chain transportation. In the mean time, second-generation vaccines with native antigens and effective adjuvants are likely to be licensed and used in Public Health control programs in the fore coming 25 years. To date, only three vaccines have been licensed for use: one live vaccine for humans in Uzbekistan, one killed vaccine for human immunotherapy in Brazil and a second-generation vaccine for dog prophylaxis in Brazil.


Asunto(s)
Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis/prevención & control , Animales , Antígenos de Protozoos/inmunología , Historia del Siglo XX , Humanos , Vacunas contra la Leishmaniasis/historia , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/inmunología
20.
An. acad. bras. ciênc ; 76(3): 583-593, Sept. 2004. tab, graf
Artículo en Inglés | LILACS | ID: lil-364485

RESUMEN

O modelo matemático descrito por Dye (1996) condenava a campanha de controle do calazar canino por considerá-la ineficaz. Usando esse modelo, demonstramos matematicamente que a ineficácia somente ocorre com valores baixos de k (índice de remoção de cães infecciosos pela campanha de controle), que coincide com os valores de soropositividade detectados no campo, pelo método de imunofluorescência (IF) em eluatos. Aplicando valores maiores de k, o controle se tornaria eficaz: valores de k correspondentes a IF (k = 0.07) ou ELISA em soros (k = 0.25) diminuiriam o numero de cães infecciosos, levando o valor de Ro a 1 ou 0 respectivamente, impedindo com isso a transmissão e o avanço da epidemia. Demonstramos experimentalmente que a remoção de cães conforme os resultados de IF nos soros em lugar de eluatos diminuiu 57% dos casos caninos (p < 0.005) e de 87.5% dos casos humanos (p < 0.005). Os nossos resultados, demonstram que a campanha de controle se torna eficaz aumentando a sensibilidade do método diagnóstico.


Asunto(s)
Humanos , Animales , Perros , Enfermedades de los Perros , Leishmaniasis Visceral , Modelos Teóricos , Brasil , Enfermedades de los Perros , Técnica del Anticuerpo Fluorescente , Incidencia , Leishmaniasis Visceral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...